Next: Functions and Variables for Elliptic Functions, Up: Top [Contents][Index]
Maximaは、Jacobiの楕円関数と不完全楕円積分のサポートを含みます。 これは、数値評価はもちろんこれらの関数のシンボル操作を含みます。 これらの関数の定義と、プロパティの多くは Abramowitz and Stegun, 16–17章にあります。 可能な限り、そこれで与えられた定義と関係を使います。
特に、すべての楕円関数と積分は、 法kや率角\alphaの代わりにパラメータmを使います。
これは、 楕円関数のために率角を使うAbramowitz and Stegunと違っているところです。 以下の関係は真です:
楕円関数と積分は、主としてシンボル計算をサポートするように意図されています。 それ故に、関数と積分の導関数のほとんどが知られています。 しかしながら、もし浮動小数点値が与えられたなら、 浮動小数点の結果が返されます。
楕円関数と積分の他の性質のほとんどのサポートはまだ書かれていません。
楕円関数のいくつかの例:
(%i1) jacobi_sn (u, m);
(%o1) jacobi_sn(u, m)
(%i2) jacobi_sn (u, 1);
(%o2) tanh(u)
(%i3) jacobi_sn (u, 0);
(%o3) sin(u)
(%i4) diff (jacobi_sn (u, m), u);
(%o4) jacobi_cn(u, m) jacobi_dn(u, m)
(%i5) diff (jacobi_sn (u, m), m);
(%o5) jacobi_cn(u, m) jacobi_dn(u, m)
elliptic_e(asin(jacobi_sn(u, m)), m)
(u - ------------------------------------)/(2 m)
1 - m
2
jacobi_cn (u, m) jacobi_sn(u, m)
+ --------------------------------
2 (1 - m)
楕円積分のいくつかの例:
(%i1) elliptic_f (phi, m);
(%o1) elliptic_f(phi, m)
(%i2) elliptic_f (phi, 0);
(%o2) phi
(%i3) elliptic_f (phi, 1);
phi %pi
(%o3) log(tan(--- + ---))
2 4
(%i4) elliptic_e (phi, 1);
(%o4) sin(phi)
(%i5) elliptic_e (phi, 0);
(%o5) phi
(%i6) elliptic_kc (1/2);
1
(%o6) elliptic_kc(-)
2
(%i7) makegamma (%);
2 1
gamma (-)
4
(%o7) -----------
4 sqrt(%pi)
(%i8) diff (elliptic_f (phi, m), phi);
1
(%o8) ---------------------
2
sqrt(1 - m sin (phi))
(%i9) diff (elliptic_f (phi, m), m);
elliptic_e(phi, m) - (1 - m) elliptic_f(phi, m)
(%o9) (-----------------------------------------------
m
cos(phi) sin(phi)
- ---------------------)/(2 (1 - m))
2
sqrt(1 - m sin (phi))
楕円関数と積分のサポートは、Raymond Toyによって書かれました。 Maximaの配布を管理するGeneral Public License (GPL)の条件のもと置かれています。
Next: Functions and Variables for Elliptic Functions, Up: Top [Contents][Index]