Purpose
To compute the matrices of an H-infinity (sub)optimal n-state
controller
| AK | BK |
K = |----|----|,
| CK | DK |
for the discrete-time system
| A | B1 B2 | | A | B |
P = |----|---------| = |---|---|
| C1 | D11 D12 | | C | D |
| C2 | D21 D22 |
and for a given value of gamma, where B2 has as column size the
number of control inputs (NCON) and C2 has as row size the number
of measurements (NMEAS) being provided to the controller.
It is assumed that
(A1) (A,B2) is stabilizable and (C2,A) is detectable,
(A2) D12 is full column rank and D21 is full row rank,
j*Theta
(A3) | A-e *I B2 | has full column rank for all
| C1 D12 |
0 <= Theta < 2*Pi ,
j*Theta
(A4) | A-e *I B1 | has full row rank for all
| C2 D21 |
0 <= Theta < 2*Pi .
Specification
SUBROUTINE SB10DD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB,
$ C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK, LDCK,
$ DK, LDDK, X, LDX, Z, LDZ, RCOND, TOL, IWORK,
$ DWORK, LDWORK, BWORK, INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
$ LDDK, LDWORK, LDX, LDZ, M, N, NCON, NMEAS, NP
DOUBLE PRECISION GAMMA, TOL
C .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
$ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
$ D( LDD, * ), DK( LDDK, * ), DWORK( * ),
$ RCOND( * ), X( LDX, * ), Z( LDZ, * )
LOGICAL BWORK( * )
Arguments
Input/Output Parameters
N (input) INTEGER
The order of the system. N >= 0.
M (input) INTEGER
The column size of the matrix B. M >= 0.
NP (input) INTEGER
The row size of the matrix C. NP >= 0.
NCON (input) INTEGER
The number of control inputs (M2). M >= NCON >= 0,
NP-NMEAS >= NCON.
NMEAS (input) INTEGER
The number of measurements (NP2). NP >= NMEAS >= 0,
M-NCON >= NMEAS.
GAMMA (input) DOUBLE PRECISION
The value of gamma. It is assumed that gamma is
sufficiently large so that the controller is admissible.
GAMMA > 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The leading N-by-N part of this array must contain the
system state matrix A.
LDA INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,M)
The leading N-by-M part of this array must contain the
system input matrix B.
LDB INTEGER
The leading dimension of the array B. LDB >= max(1,N).
C (input) DOUBLE PRECISION array, dimension (LDC,N)
The leading NP-by-N part of this array must contain the
system output matrix C.
LDC INTEGER
The leading dimension of the array C. LDC >= max(1,NP).
D (input) DOUBLE PRECISION array, dimension (LDD,M)
The leading NP-by-M part of this array must contain the
system input/output matrix D.
LDD INTEGER
The leading dimension of the array D. LDD >= max(1,NP).
AK (output) DOUBLE PRECISION array, dimension (LDAK,N)
The leading N-by-N part of this array contains the
controller state matrix AK.
LDAK INTEGER
The leading dimension of the array AK. LDAK >= max(1,N).
BK (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
The leading N-by-NMEAS part of this array contains the
controller input matrix BK.
LDBK INTEGER
The leading dimension of the array BK. LDBK >= max(1,N).
CK (output) DOUBLE PRECISION array, dimension (LDCK,N)
The leading NCON-by-N part of this array contains the
controller output matrix CK.
LDCK INTEGER
The leading dimension of the array CK.
LDCK >= max(1,NCON).
DK (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
The leading NCON-by-NMEAS part of this array contains the
controller input/output matrix DK.
LDDK INTEGER
The leading dimension of the array DK.
LDDK >= max(1,NCON).
X (output) DOUBLE PRECISION array, dimension (LDX,N)
The leading N-by-N part of this array contains the matrix
X, solution of the X-Riccati equation.
LDX INTEGER
The leading dimension of the array X. LDX >= max(1,N).
Z (output) DOUBLE PRECISION array, dimension (LDZ,N)
The leading N-by-N part of this array contains the matrix
Z, solution of the Z-Riccati equation.
LDZ INTEGER
The leading dimension of the array Z. LDZ >= max(1,N).
RCOND (output) DOUBLE PRECISION array, dimension (8)
RCOND contains estimates of the reciprocal condition
numbers of the matrices which are to be inverted and
estimates of the reciprocal condition numbers of the
Riccati equations which have to be solved during the
computation of the controller. (See the description of
the algorithm in [2].)
RCOND(1) contains the reciprocal condition number of the
matrix R3;
RCOND(2) contains the reciprocal condition number of the
matrix R1 - R2'*inv(R3)*R2;
RCOND(3) contains the reciprocal condition number of the
matrix V21;
RCOND(4) contains the reciprocal condition number of the
matrix St3;
RCOND(5) contains the reciprocal condition number of the
matrix V12;
RCOND(6) contains the reciprocal condition number of the
matrix Im2 + DKHAT*D22
RCOND(7) contains the reciprocal condition number of the
X-Riccati equation;
RCOND(8) contains the reciprocal condition number of the
Z-Riccati equation.
Tolerances
TOL DOUBLE PRECISION
Tolerance used in neglecting the small singular values
in rank determination. If TOL <= 0, then a default value
equal to 1000*EPS is used, where EPS is the relative
machine precision.
Workspace
IWORK INTEGER array, dimension max(2*max(M2,N),M,M2+NP2,N*N)
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) contains the optimal
LDWORK.
LDWORK INTEGER
The dimension of the array DWORK.
LDWORK >= max(LW1,LW2,LW3,LW4), where
LW1 = (N+NP1+1)*(N+M2) + max(3*(N+M2)+N+NP1,5*(N+M2));
LW2 = (N+NP2)*(N+M1+1) + max(3*(N+NP2)+N+M1,5*(N+NP2));
LW3 = 13*N*N + 2*M*M + N*(8*M+NP2) + M1*(M2+NP2) + 6*N +
max(14*N+23,16*N,2*N+M,3*M);
LW4 = 13*N*N + M*M + (8*N+M+M2+2*NP2)*(M2+NP2) + 6*N +
N*(M+NP2) + max(14*N+23,16*N,2*N+M2+NP2,3*(M2+NP2));
For good performance, LDWORK must generally be larger.
Denoting Q = max(M1,M2,NP1,NP2), an upper bound is
max((N+Q)*(N+Q+6),13*N*N + M*M + 2*Q*Q + N*(M+Q) +
max(M*(M+7*N),2*Q*(8*N+M+2*Q)) + 6*N +
max(14*N+23,16*N,2*N+max(M,2*Q),3*max(M,2*Q)).
BWORK LOGICAL array, dimension (2*N)
Error Indicator
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
j*Theta
= 1: if the matrix | A-e *I B2 | had not full
| C1 D12 |
column rank;
j*Theta
= 2: if the matrix | A-e *I B1 | had not full
| C2 D21 |
row rank;
= 3: if the matrix D12 had not full column rank;
= 4: if the matrix D21 had not full row rank;
= 5: if the controller is not admissible (too small value
of gamma);
= 6: if the X-Riccati equation was not solved
successfully (the controller is not admissible or
there are numerical difficulties);
= 7: if the Z-Riccati equation was not solved
successfully (the controller is not admissible or
there are numerical difficulties);
= 8: if the matrix Im2 + DKHAT*D22 is singular.
= 9: if the singular value decomposition (SVD) algorithm
did not converge (when computing the SVD of one of
the matrices |A B2 |, |A B1 |, D12 or D21).
|C1 D12| |C2 D21|
Method
The routine implements the method presented in [1].References
[1] Green, M. and Limebeer, D.J.N.
Linear Robust Control.
Prentice-Hall, Englewood Cliffs, NJ, 1995.
[2] Petkov, P.Hr., Gu, D.W., and Konstantinov, M.M.
Fortran 77 routines for Hinf and H2 design of linear
discrete-time control systems.
Report 99-8, Department of Engineering, Leicester University,
April 1999.
Numerical Aspects
With approaching the minimum value of gamma some of the matrices which are to be inverted tend to become ill-conditioned and the X- or Z-Riccati equation may also become ill-conditioned which may deteriorate the accuracy of the result. (The corresponding reciprocal condition numbers are given in the output array RCOND.)Further Comments
NoneExample
Program Text
* SB10DD EXAMPLE PROGRAM TEXT
* Copyright (c) 2002-2010 NICONET e.V.
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, PMAX
PARAMETER ( NMAX = 10, MMAX = 10, PMAX = 10 )
INTEGER LDA, LDB, LDC, LDD, LDAK, LDBK, LDCK, LDDK, LDX,
$ LDZ
PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX, LDD = PMAX,
$ LDAK = NMAX, LDBK = NMAX, LDCK = PMAX,
$ LDDK = PMAX, LDX = NMAX, LDZ = NMAX )
INTEGER LIWORK
PARAMETER ( LIWORK = MAX( 2*MAX( MMAX, NMAX ),
$ MMAX + PMAX, NMAX*NMAX ) )
INTEGER MPMX
PARAMETER ( MPMX = MAX( MMAX, PMAX ) )
INTEGER LDWORK
PARAMETER ( LDWORK =
$ MAX( ( NMAX + MPMX )*( NMAX + MPMX + 6 ),
$ 13*NMAX*NMAX + MMAX*MMAX + 2*MPMX*MPMX +
$ NMAX*( MMAX + MPMX ) +
$ MAX( MMAX*( MMAX + 7*NMAX ),
$ 2*MPMX*( 8*NMAX + MMAX + 2*MPMX ) )
$ + 6*NMAX +
$ MAX( 14*NMAX + 23, 16*NMAX,
$ 2*NMAX + MAX( MMAX, 2*MPMX ),
$ 3*MAX( MMAX, 2*MPMX ) ) ) )
* .. Local Scalars ..
DOUBLE PRECISION GAMMA, TOL
INTEGER I, INFO, J, M, N, NCON, NMEAS, NP
* .. Local Arrays ..
LOGICAL BWORK(2*NMAX)
INTEGER IWORK(LIWORK)
DOUBLE PRECISION A(LDA,NMAX), AK(LDA,NMAX), B(LDB,MMAX),
$ BK(LDBK,PMAX), C(LDC,NMAX), CK(LDCK,NMAX),
$ D(LDD,MMAX), DK(LDDK,PMAX), X(LDX,NMAX),
$ Z(LDZ,NMAX), DWORK(LDWORK), RCOND( 8 )
* .. External Subroutines ..
EXTERNAL SB10DD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, NP, NCON, NMEAS
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) N
ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) M
ELSE IF ( NP.LT.0 .OR. NP.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) NP
ELSE IF ( NCON.LT.0 .OR. NCON.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99987 ) NCON
ELSE IF ( NMEAS.LT.0 .OR. NMEAS.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99986 ) NMEAS
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,NP )
READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,NP )
READ ( NIN, FMT = * ) GAMMA, TOL
CALL SB10DD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB,
$ C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK, LDCK,
$ DK, LDDK, X, LDX, Z, LDZ, RCOND, TOL, IWORK,
$ DWORK, LDWORK, BWORK, INFO )
IF ( INFO.EQ.0 ) THEN
WRITE ( NOUT, FMT = 99997 )
DO 10 I = 1, N
WRITE ( NOUT, FMT = 99992 ) ( AK(I,J), J = 1,N )
10 CONTINUE
WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99992 ) ( BK(I,J), J = 1,NMEAS )
20 CONTINUE
WRITE ( NOUT, FMT = 99995 )
DO 30 I = 1, NCON
WRITE ( NOUT, FMT = 99992 ) ( CK(I,J), J = 1,N )
30 CONTINUE
WRITE ( NOUT, FMT = 99994 )
DO 40 I = 1, NCON
WRITE ( NOUT, FMT = 99992 ) ( DK(I,J), J = 1,NMEAS )
40 CONTINUE
WRITE( NOUT, FMT = 99993 )
WRITE( NOUT, FMT = 99991 ) ( RCOND(I), I = 1, 8 )
ELSE
WRITE( NOUT, FMT = 99998 ) INFO
END IF
END IF
STOP
*
99999 FORMAT (' SB10DD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (/' INFO on exit from SB10DD =',I2)
99997 FORMAT (/' The controller state matrix AK is'/)
99996 FORMAT (/' The controller input matrix BK is'/)
99995 FORMAT (/' The controller output matrix CK is'/)
99994 FORMAT (/' The controller matrix DK is'/)
99993 FORMAT (/' The estimated condition numbers are'/)
99992 FORMAT (10(1X,F8.4))
99991 FORMAT ( 5(1X,D12.5))
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' NP is out of range.',/' NP = ',I5)
99987 FORMAT (/' NCON is out of range.',/' NCON = ',I5)
99986 FORMAT (/' NMEAS is out of range.',/' NMEAS = ',I5)
END
Program Data
SB10DD EXAMPLE PROGRAM DATA 6 5 5 2 2 -0.7 0.0 0.3 0.0 -0.5 -0.1 -0.6 0.2 -0.4 -0.3 0.0 0.0 -0.5 0.7 -0.1 0.0 0.0 -0.8 -0.7 0.0 0.0 -0.5 -1.0 0.0 0.0 0.3 0.6 -0.9 0.1 -0.4 0.5 -0.8 0.0 0.0 0.2 -0.9 -1.0 -2.0 -2.0 1.0 0.0 1.0 0.0 1.0 -2.0 1.0 -3.0 -4.0 0.0 2.0 -2.0 1.0 -2.0 1.0 0.0 -1.0 0.0 1.0 -2.0 0.0 3.0 1.0 0.0 3.0 -1.0 -2.0 1.0 -1.0 2.0 -2.0 0.0 -3.0 -3.0 0.0 1.0 -1.0 1.0 0.0 0.0 2.0 0.0 -4.0 0.0 -2.0 1.0 -3.0 0.0 0.0 3.0 1.0 0.0 1.0 -2.0 1.0 0.0 -2.0 1.0 -1.0 -2.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 2.0 -1.0 -3.0 0.0 1.0 0.0 1.0 0.0 1.0 -1.0 0.0 0.0 1.0 2.0 1.0 111.294 0.00000001Program Results
SB10DD EXAMPLE PROGRAM RESULTS The controller state matrix AK is -18.0030 52.0376 26.0831 -0.4271 -40.9022 18.0857 18.8203 -57.6244 -29.0938 0.5870 45.3309 -19.8644 -26.5994 77.9693 39.0368 -1.4020 -60.1129 26.6910 -21.4163 62.1719 30.7507 -0.9201 -48.6221 21.8351 -0.8911 4.2787 2.3286 -0.2424 -3.0376 1.2169 -5.3286 16.1955 8.4824 -0.2489 -12.2348 5.1590 The controller input matrix BK is 16.9788 14.1648 -18.9215 -15.6726 25.2046 21.2848 20.1122 16.8322 1.4104 1.2040 5.3181 4.5149 The controller output matrix CK is -9.1941 27.5165 13.7364 -0.3639 -21.5983 9.6025 3.6490 -10.6194 -5.2772 0.2432 8.1108 -3.6293 The controller matrix DK is 9.0317 7.5348 -3.4006 -2.8219 The estimated condition numbers are 0.24960D+00 0.98548D+00 0.99186D+00 0.63733D-05 0.48625D+00 0.29430D-01 0.56942D-02 0.12470D-01
Click here to get a compressed (gzip) tar file containing the source code of the routine, the example program, data, documentation, and related files.
Return to index