Purpose
To apply the inverse of a balancing transformation, computed by
the SLICOT Library routines MB04DD or MB04DS, to a 2*N-by-M matrix
[ V1 ]
[ ],
[ sgn*V2 ]
where sgn is either +1 or -1.
Specification
SUBROUTINE MB04DI( JOB, SGN, N, ILO, SCALE, M, V1, LDV1, V2, LDV2,
$ INFO )
C .. Scalar Arguments ..
CHARACTER JOB, SGN
INTEGER ILO, INFO, LDV1, LDV2, M, N
C .. Array Arguments ..
DOUBLE PRECISION SCALE(*), V1(LDV1,*), V2(LDV2,*)
Arguments
Mode Parameters
JOB CHARACTER*1
Specifies the type of inverse transformation required:
= 'N': do nothing, return immediately;
= 'P': do inverse transformation for permutation only;
= 'S': do inverse transformation for scaling only;
= 'B': do inverse transformations for both permutation
and scaling.
JOB must be the same as the argument JOB supplied to
MB04DD or MB04DS.
SGN CHARACTER*1
Specifies the sign to use for V2:
= 'P': sgn = +1;
= 'N': sgn = -1.
Input/Output Parameters
N (input) INTEGER
The number of rows of the matrices V1 and V2. N >= 0.
ILO (input) INTEGER
The integer ILO determined by MB04DD or MB04DS.
1 <= ILO <= N+1.
SCALE (input) DOUBLE PRECISION array, dimension (N)
Details of the permutation and scaling factors, as
returned by MB04DD or MB04DS.
M (input) INTEGER
The number of columns of the matrices V1 and V2. M >= 0.
V1 (input/output) DOUBLE PRECISION array, dimension (LDV1,M)
On entry, the leading N-by-M part of this array must
contain the matrix V1.
On exit, the leading N-by-M part of this array is
overwritten by the updated matrix V1 of the transformed
matrix.
LDV1 INTEGER
The leading dimension of the array V1. LDV1 >= max(1,N).
V2 (input/output) DOUBLE PRECISION array, dimension (LDV2,M)
On entry, the leading N-by-M part of this array must
contain the matrix V2.
On exit, the leading N-by-M part of this array is
overwritten by the updated matrix V2 of the transformed
matrix.
LDV2 INTEGER
The leading dimension of the array V2. LDV2 >= max(1,N).
Error Indicator
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
References
[1] Benner, P.
Symplectic balancing of Hamiltonian matrices.
SIAM J. Sci. Comput., 22 (5), pp. 1885-1904, 2001.
Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None